Quark and Lepton Masses from Top Loops

Bogdan Dobrescu (Fermilab)

Work with Paddy Fox

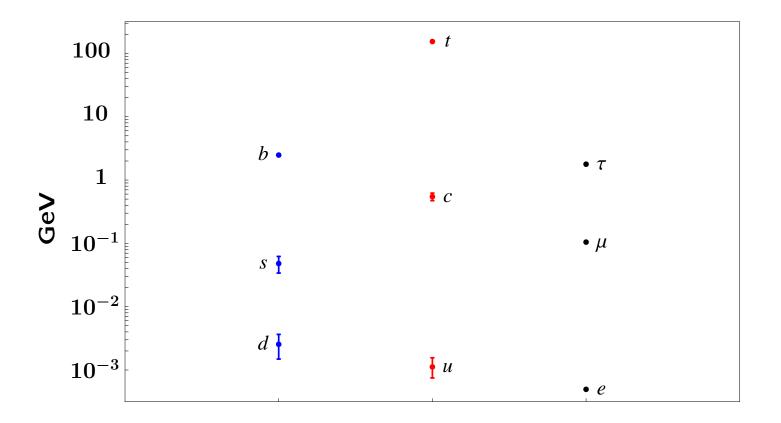
Many attempts at explaining the hierarchy of standard model Yukawa couplings:

- discrete symmetries $\rightarrow (\langle \phi \rangle/M)^n$ suppressions.
- GUT relations.
- wave function overlaps in extra dimensions.

• ...

loop suppressions:

Georgi, Glashow, 1972 – attempts to calculate the electron mass as a one loop contribution involving the muon mass.


Many papers in the 1980's (e.g., Balakrishna, Kagan, Mohapatra, 1988)

Typical scheme: 3rd generation masses at tree level,

2nd generation masses at one loop,

1st generation masses at two loops.

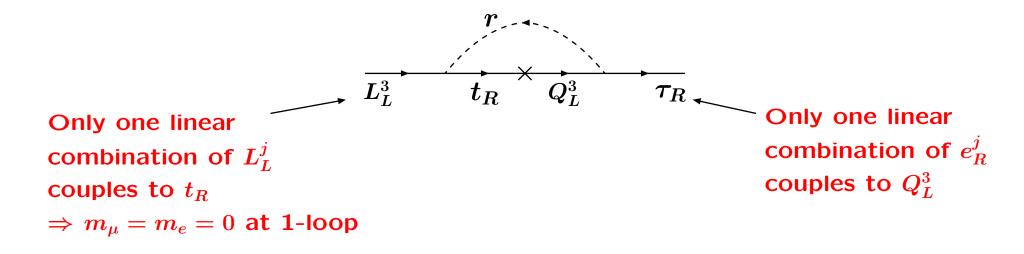
However, the fermion masses (at ~ 1 TeV) look more complicated:

Let us assume that only the top quark gets its mass at tree level, $y_t\, \bar{t}_R Q_L^3\, H\,$, and introduce some interactions that communicate EWSB to the other quarks and leptons.

r: scalar field transforming as (3,2,+7/6) under

$$SU(3)_c imes SU(2)_W imes U(1)_Y \ r = egin{pmatrix} r_u \\ r_d \end{pmatrix} & ext{charge} + 5/3 \\ ext{charge} + 2/3 \end{cases}$$

Most general renormalizable interactions with SM fermions

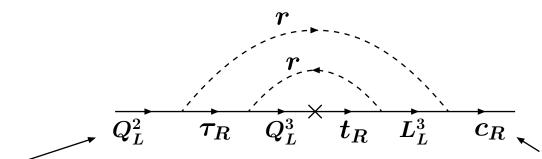

$$\lambda_{ij} \, r \, \overline{u}_R^{\, i} L_L^j + \lambda_{ij}' \, r \, \overline{Q}_L^{\, i} e_R^j$$
 (r is a leptoquark)

break explicitly the chiral symmetries of the

quarks
$$U(2)_Q imes U(2)_u imes U(1)_t imes U(3)_d o U(1)_u imes U(3)_d$$
 and leptons $U(3)_L imes U(3)_e o U(1)_L$

⇒ all up-type quarks and electrically-charged leptons get masses at some loop level.

The 1-loop diagram responsible for the tau mass:

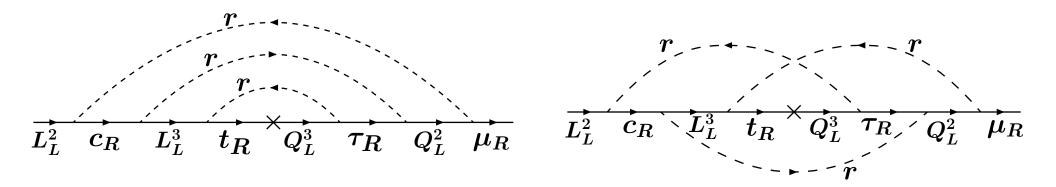

$$m_ au \simeq \lambda_{33} \lambda_{33}' \, m_t \, rac{N_c}{16\pi^2} \ln \left(rac{\Lambda^2}{M_r^2}
ight)$$

Some new physics cuts off the loop integral at a scale Λ :

a superpartner of r, or some dynamics if r is a composite particle, or some particle integrated out to generate the Yukawa couplings of r.

 $m_{ au}$ depends on $rac{\Lambda}{M_r}$ (only a lower limit on M_r is set by phenomenology).

Charm mass induced by a 2-loop "rainbow" diagram:

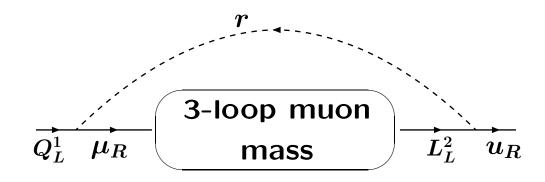

Only one linear combination of Q_L^1 and Q_L^2 couples to $au_R \Rightarrow m_u = 0$ at 1-loop

Only one linear combination of u_R^1 and u_R^2 couples to L_L^3

$$m_c \simeq \lambda'_{23} \lambda_{23} \, m_ au \, rac{1}{16 \pi^2} \ln \left(rac{\Lambda^2}{M_r^2}
ight)$$

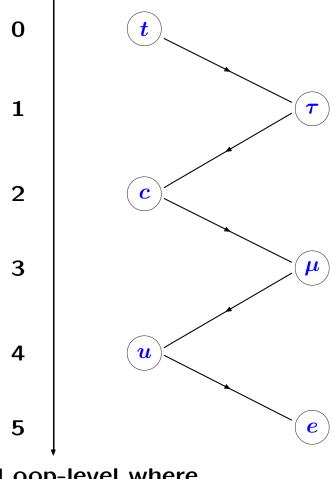
If there are no other contributions to m_c , the $m_c/m_ au$ ratio at 1 TeV requires $\lambda_{23}\lambda_{23}'\approx (3.3)^2$ for $\Lambda\approx 10M_r$.

Muon mass induced by 3-loop "rainbow" and nonplanar diagrams:

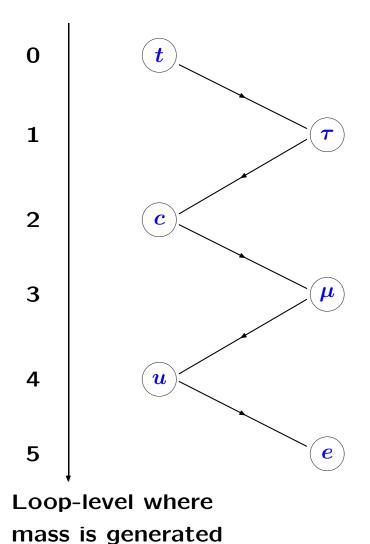


$$m_{\mu} \simeq \lambda_{22}^{\prime} \lambda_{22} \, m_c \, \left[1 + O(1/N_c)
ight] \, rac{N_c}{16\pi^2} \ln \left(rac{\Lambda^2}{M_r^2}
ight)$$

 m_{μ}/m_c ratio requires $\lambda_{22}\lambda_{22}'\left[1+O(1/N_c)\right]pprox(1.5)^2$


At 3-loops the electron is still massless!

Up-quark mass induced at 4-loops:


$$m_u \simeq \lambda'_{12} \lambda_{12} \, m_\mu \, rac{1}{16 \pi^2} \ln \left(rac{\Lambda^2}{M_r^2}
ight)$$

Correct m_u/m_μ ratio requires $\lambda_{12}\lambda_{12}'\approx (0.6)^2$

Loop-level where mass is generated

"Domino" mechanism

Only input: $\lambda_{ij}\,r\,\overline{u}_R^{\,i}L_L^j+\lambda_{ij}'\,r\,\overline{Q}_L^{\,i}e_R^j$ and $m_t.$

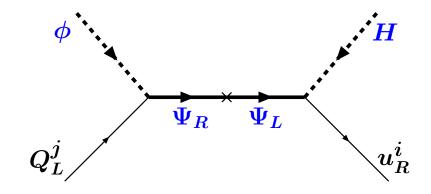
$$\lambda \sim \lambda' \sim egin{pmatrix} 2.3 & 0.6 & 0 \ 0 & 1.5 & 3.3 \ 0 & 0 & 0.4 \end{pmatrix}$$

"Domino" mechanism

Physics at the "cut-off" scale

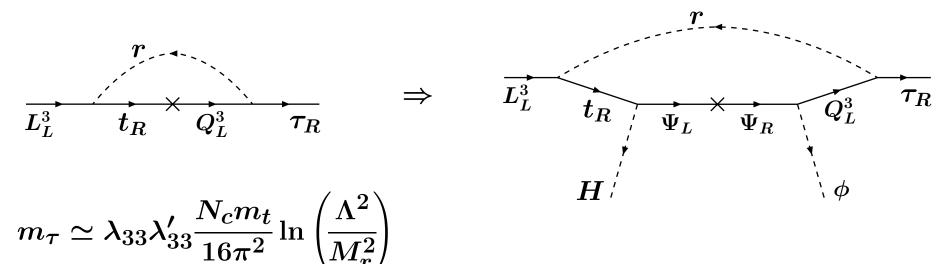
Assume:

- ullet Higgs doublet is charged under some new symmetry \mathcal{G}_H , which forbids dimension-4 couplings to standard model fermions.
- ullet \mathcal{G}_H is broken by the VEV of a scalar ϕ which is a singlet under SU(3) imes SU(2) imes U(1).


Introduce a vectorlike fermion, Ψ , having same gauge charges as Q_L .

Field redefinitions of u_R^i and Q_L^j

⇒ only one quark couples


to $m{H}$ at tree level: $rac{1}{M_\Psi} \phi m{H} \, \overline{u}_R^3 Q_L^3$

⇒ effective top Yukawa coupling.

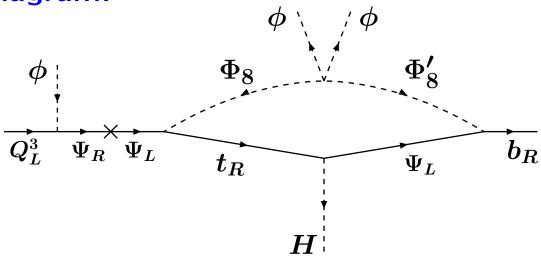
Only the top quark acquires mass at tree level even when no symmetry differentiates it from other standard model fermions!

Loop-induced masses are finite contributions to the coefficient of a dimension-5 operator times $\langle \phi \rangle \langle H \rangle$:

Coefficient of $\phi H \overline{\tau}_R L_L^3$ operator: $y_H y_\phi \lambda_{33} \lambda_{33}' N_c$ times a finite integral

$$M_{\Psi} \int rac{d^4k}{(2\pi)^4} \, rac{1}{k^2 \left(k^2 - M_{\Psi}^2
ight) \left(k^2 - M_r^2
ight)} = rac{1}{16\pi^2} rac{M_{\Psi}}{M_{\Psi}^2 - M_r^2} \ln \left(rac{M_{\Psi}^2}{M_r^2}
ight)$$

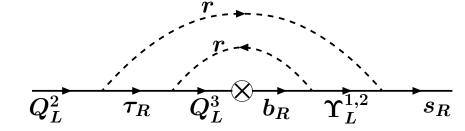
$$m_t \simeq y_H y_\phi rac{1}{M_\Psi} \langle \phi
angle \langle H
angle \qquad \Rightarrow \quad \Lambda \simeq M_\Psi \quad ext{ for } M_\Psi \gg M_r$$

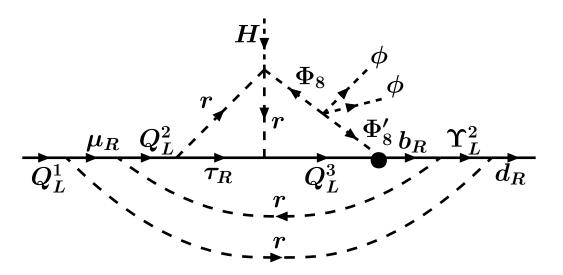

Down-type quark masses

 Φ_8,Φ_8' : scalar fields with charges $(8,2,\pm 1/2)$ under $SU(3)_c imes SU(2)_W imes U(1)_Y$, and +1 under \mathcal{G}_H .

Couplings to quarks: $\kappa_i \Phi_8 \ \overline{u}_R^i \Psi_L + \kappa' \Phi_8' \ \overline{d}_R^3 \Psi_L$ (only b_R couples!)

Quartic scalar coupling: $\Phi_8\Phi_8'\phi\phi$


 m_b induced by a 1-loop diagram:

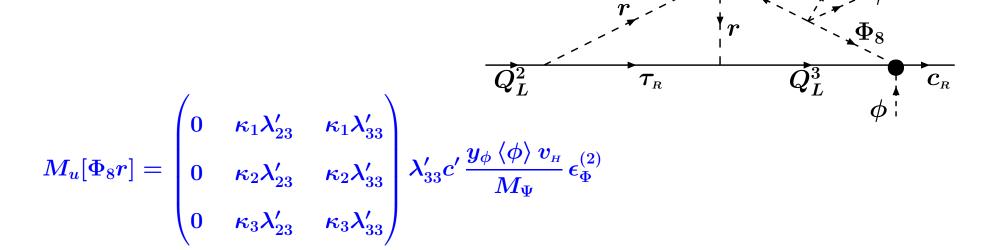

- U(2) chiral symmetry of $d_R^{1,2}$ has not been broken so far.
- ightarrow a new particle must couple to $d_R^{1,2}$ in order to generate m_s & m_d

 $\Upsilon_{L,R}$: fermion of charges (1,2,+3/2) under $SU(3)_c imes SU(2)_W imes U(1)_Y$, and 0 under \mathcal{G}_H .

 m_s induced by a 3-loop diagram:

 m_d induced at 4 loops:

Summary of field content:

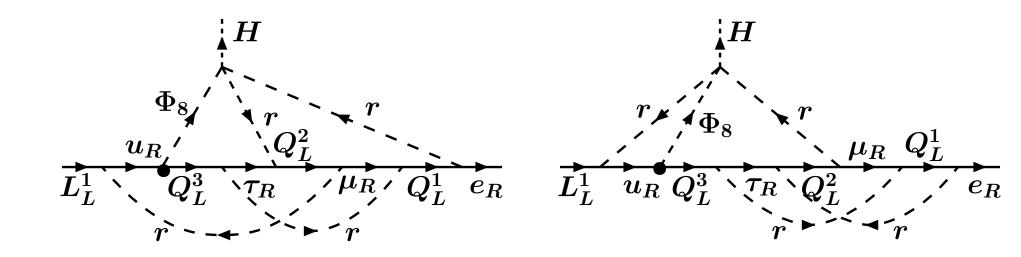

	H	ϕ	$\Psi_{L,R}$	r	Φ_8	Φ_8'	$\Upsilon^{1,2}_{L,R}$
$SU(3)_c$	1	1	3	3	8	8	1
$SU(2)_W$	2	1	2	2	2	2	2
$U(1)_{Y}$	+1/2	0	+1/6	+7/6	+1/2	-1/2	+3/2
\mathcal{G}_H	+1	-1	-1	0	+1	+1	0
spin	0	0	1/2	0	0	0	1/2

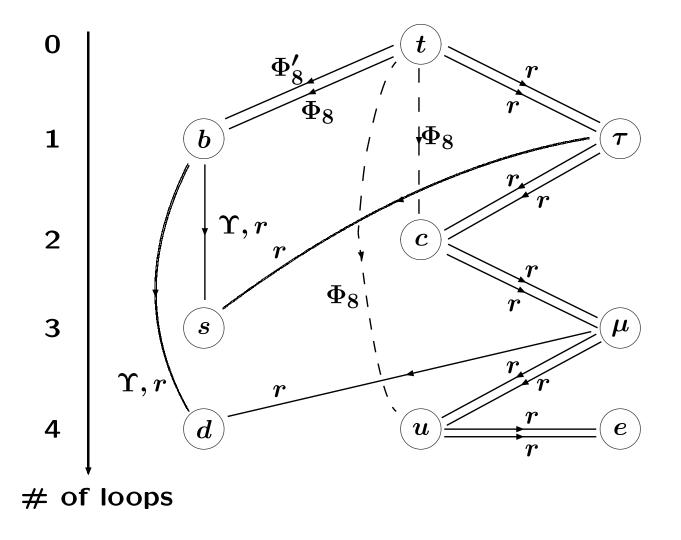
give up-type quark and charged lepton masses

give down-type quark masses.

$$SO(10)$$
 GUT: $16\cdot 16\cdot \overline{126}$ $\overline{126}\supset \phi+r+\Phi_8+\Phi_8'+H+...$

Additional m_c induced at 2 loops:




$$egin{array}{lll} \epsilon_{\Phi}^{(2)} &=& N_c \int \!\! rac{d^4k'}{(2\pi)^4} rac{M_\Psi^2 \ k'}{k'^2 (k'^2 - M_8^2) (k'^2 - M_\Psi^2)} \int \!\! rac{d^4k}{(2\pi)^4} rac{k}{k^2 (k^2 - M_r^2) \left[(k - k')^2 - M_r^2
ight]} \ &=& N_c rac{M_\Psi^2}{16\pi^2} \int_0^1 \!\! dx \int_0^1 \!\! dy \ \widetilde{I}_1 \left(M_\Psi, M_8, M_r \sqrt{(1/x - y)/(1 - x)}
ight) \end{array}$$

$$\widetilde{I}_1(M_\Psi, M_8, m) = rac{m^2\,M_8^2 \ln{(m/M_8)} + M_\Psi^2\,m^2 \ln{(M_\Psi/m)} + M_8^2\,M_\Psi^2 \ln{(M_8/M_\Psi)}}{8\pi^2\,(m^2 - M_8^2)\,(M_\Psi^2 - M_8^2)\,(M_\Psi^2 - m^2)}$$

For $M_8 \ll M_r, M_\Psi$, and expanding in $M_r^2/M_\Psi^2 \ll 1$: $\epsilon_\Phi^{(2)} pprox rac{N_c}{(16\pi^2)^2} \left| \ln \left(rac{M_\Psi^2}{M_r^2}
ight) - rac{\pi^2}{6}
ight|$

Additional contributions to the electron mass from non-planar 4-loop diagrams:

Each line connecting a pair of fermions indicate interactions that break their chiral symmetries.

Quark mass matrices:

$$M_u pprox m_t egin{pmatrix} \epsilon^4 & \epsilon^2 & \epsilon^2 \ \epsilon^4 & \epsilon^2 & \epsilon^2 \ \epsilon^4 & \epsilon^2 & 1 \end{pmatrix} \qquad M_d pprox m_t egin{pmatrix} \epsilon^4 & \epsilon^4 & \epsilon^4 \ \epsilon^4 & \epsilon^3 & \epsilon^3 \ \epsilon^4 & \epsilon^3 & \epsilon \end{pmatrix}$$

$$\epsilon pprox rac{N_c}{16\pi^2} \ln rac{M_1^2}{M_2^2} pprox O(0.1)$$

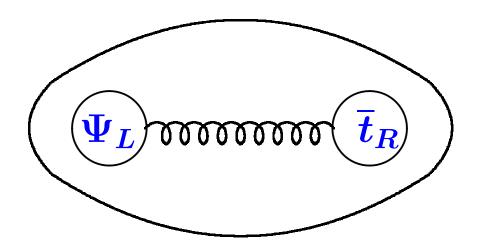
$$\Rightarrow V_{CKM} = R_u^\dagger R_d pprox egin{pmatrix} 1 - \epsilon^2 & \epsilon & \epsilon^3 \ -\epsilon & 1 - \epsilon^2 & \epsilon^2 \ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix}$$

Phenomenological constraints

Tree level flavor-changing processes induced by r exchange:

$$\mu \to e \text{ conversion} \qquad \qquad \mu \\ \hline \nu \qquad \qquad \nu \\ \hline u \qquad \qquad \qquad \nu \\ K^+ \to \pi^0 \mu^+ e^-, \ \dots \\ \tau^+ \to K^0 e^+, \ \dots \\ \pi^+ \to e^+ \nu \text{ versus } \pi^+ \to \mu^+ \nu \\ \dots$$

$$\Rightarrow M_r > O(100)$$
 TeV.


Top condensation \Rightarrow Higgs boson is a $\bar{t}t$ bound state!

(Nambu; Miransky, Tanabashi, Yamawaki; Bardeen, Hill, Lindner, ...)

Binding may be due to some strongly-interacting heavy gauge bosons

New heavy quarks (vectorlike) could bring scale of Higgs compositeness down to a few TeV.

Explicit models: top seesaw, QCD in extra dimensions, ...

Conclusions

- If EWSB is communicated from the top quark to the other fermions by couplings to some new scalar fields, then realistic mass spectra are induced by multi-loop contributions.
- Searches for new flavor-changing processes may unravel the origin of quark and lepton masses.

Work done with Paddy Fox at Fermilab.

Bogdan Dobrescu – July 2008